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1. INTRODUCTION

In recent years there has been great interest in n-term wavelet approxi-
mation. This is basically due to the numerical applications of wavelets to
such fields as statistics, signal and image processing, and the numerical
solution of PDE’s.

In order to describe the results of this paper we first recall, without ela-
boration, the usual setting of wavelet decompositions. For a detailed dis-
cussion we refer the reader to Meyer [M] and Daubechies [Da]. We
would like to point out that our results can be established for quite general
wavelet-type decompositions, however for notational reasons we shall
restrict ourselves to orthogonal wavelet bases and indicate the necessary
changes in order to deal with more general bases.

Throughout this paper, we denote by S :=S(Rd) the Schwartz space of
infinitely differentiable, rapidly decreasing functions on Rd and by SŒ :=
SŒ(Rd) its dual, the space of tempered distributions. We also denote by
SŒ/P the space of equivalence classes of distributions in SŒ modulo poly-
nomials, i.e., SŒ/P is the dual of the space S. :=S.(Rd) of all functions
g ¥S such that > g(x) xa dx=0 for a ¥ Zd

+, (Z+ :={n: n \ 0}).
We write D for the family of all dyadic cubes in Rd and Dm, m ¥ Z, for

the collection of all cubes I ¥D of volume |I|=2−dm. Finally, for any



distribution f ¥SŒ and any dyadic cube I=2−j[k, k+1], k ¥ Zd, j ¥ Zd we
define the distribution

fI(x) :=2 jd/2f(2 jx−k),(1.1)

where the dilation and translation are considered in distributional sense.
Multivariate wavelet bases are typically constructed as tensor products

of a univariate scaling function k0 :=f and n associated wavelet k. Let V
denote the set of nonzero vertices of the unit cube in Rd, for each vertex
v=(v1, ..., vd) ¥ V we set

kv(x) :=kv1(x1) · · ·kvd(xd),

and we define Y :={kv : v ¥ V}. Then, the collection

W :={kv
I : I ¥ D, v ¥ V}

forms an orthonormal basis for the space L2(Rd). We refer the reader to
[Da] for details on the construction of Y.

Typically one requires that for some r \ 1 the wavelet set Y satisfies
Y … C r(Rd) and

(i) |(kv) (a) (x)| [ C(1+|x|)−M, |a| [ r, v ¥ V,

(ii) F
R
d
xakv(x) dx=0, |a| < r, v ¥ V.

(1.2)

If f ¥SŒ/P then for r, M sufficiently large (depending on the order of f)
we define the wavelet coefficients

av
I(f) :=Of, kv

IP, I ¥ D, v … V,

and we set

aI(f) :=1 C
v ¥ V

(av
I(f))22

1/2

.

For every f ¥SŒ/P and 0 < p [. we also define the functions

Sap(f, x) :=1 C
I ¥ D

(|I|−a/d−1/2 aI(f) qI(x))p2
1/p

, x ¥ Rd,

NON-LINEAR APPROXIMATION 111



where qI is the characteristic function of I, and

Tap(f, m) :=1 C
I ¥ Dm

(|I|−a/d+1/p−1/2 aI(f))p2
1/p

, m ¥ Z,

with the usual modifications for p=..
By varying the smoothness and decay parameters r and M, one can

prove that W forms an unconditional basis for a host of distribution spaces
such as the homogeneous Triebel–Lizorkin and Besov spaces, Ḟ s

p, q and
Ḃ s

p, q respectively. We say that a wavelet set Y is admissible for the
triplet (s, p, q), s ¥ R, 0 < p, q [. if r > max{J−d−s, s} and M >
max{J, d+r} where J :=d/min{1, p, q}. These assumptions guarantee
that W is an unconditional basis for Ḟ s

p, q and Ḃ s
p, q (see [M], [K1], and

[FJW]). We recall also the so-called Meyer wavelet set [M] which satisfies
(1.2) for any choice of the parameters r and M.

Besov spaces were initially introduced by Besov in the late 1950s by
means of the modulus of smoothness and were closely related to Approx-
imation Theory. At the end of 1960s, new methods using the Fourier
Transform were employed that led to alternative descriptions of these
spaces and to the introduction of the Triebel–Lizorkin spaces. In this
article however, we prefer to define these spaces directly and in a unified
way by means of wavelet decompositions. These definitions are equivalent
to the original ones. In particular, if Y is admissible for (s, p, q), s ¥ R,
0 < p <., and 0 < q [., Ḟ s

p, q is defined as the set of all distributions in
SŒ/P for which the following (quasi)-norm

||f||Ḟs
p, q

:=||S s
q(f, · )||Lp(R

d)(1.3)

is finite. Moreover, every f ¥ Ḟ s
p, q has the unique wavelet decomposition

f= C
I ¥ D

AI(f), AI(f) :=C
v ¥ V

av
Ik

v
I,(1.4)

where the convergence is considered in the sense of SŒ/P (see [T]).
Similarly, if Y is admissible for (s, p, q), where s ¥ R and 0 < p, q [.,

then Ḃ s
p, q, is defined as the set of all distributions in SŒ/P for which the

following (quasi)-norm

||f||Ḃs
p, q

:=||T s
p(f, · )||aq(Z)(1.5)

is finite. In addition, every f ¥ Ḃ s
p, q, enjoys the representation (1.4).

We note that the above definitions are independent of admissible wavelet
sets since different sets give rise to equivalent (quasi)-norms. Also it is
easily seen from the definitions that Ḟ s

p, p=Ḃ s
p, p. To avoid any confusion,

for the rest of the paper, if not otherwise mentioned, we consider Meyer’s
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wavelet set which is admissible for all values of s, p and q. However, as we
already mentioned, our results hold for more general bases: the main
requirements for our subsequent analysis are (1.3) and (1.5) which are
known to hold for instance, for biorthogonal wavelets, prewavelets or the
more general decompositions considered in [KP].

We recall that, for 1 < p <., Ḟ0
p, 2=Lp while, for 0 < p [ 1, Ḟ0

p, 2=Hp

the real Hardy spaces. Also, for s > 0, 1 < p <., Ḟ s
p, 2=H s

p the potential
space, and for integer values of s, Ḟ s

p, 2 is the usual Sobolev space W s
p

equipped with its seminorm (see [T]). The characterization (1.5) of Besov
spaces has been proved by several authors in various subcases (see [M],
[K1], and the references therein) under different assumptions. For the
Triebel–Lizorkin spaces, we refer the reader to [M] and [FJW].

Let Sn be the set of all functions

S=C
I ¥ L

AI(S),

where A …D is a set a dyadic cubes with cardinality #L [ n.
We are interested in approximating in the Triebel–Lizorkin or Besov

spaces by the elements of Sn, n ¥ Z+. For a given distribution f and any
quasi-normed subspace X …SŒ/P we define

sn(f, X) := inf
S ¥ Sn

||f−S||X.

We shall consider the cases where X=Ḟ s
p, q or X=Ḃ s

p, q, s ¥ R, p, q > 0.
Our main goal is to characterize the functions f for which sn(f, X) has

a prescribed rate of decay as n Q.. For 0 < q [. and a > 0 we define the
approximation class Aa

q(X) to be the set of all f ¥SŒ/P such that

|f|Aaq(X)=˛1 C
.

j=0
[2 jas2j(f)X]q21/q, 0 < q <.,

sup
j \ 0

2 jas2j(f)X, q=.,
(1.6)

is finite.
Let now S0 be any near-best approximant to f from S1 … X (i.e.,

||f−S0 ||X [ 2s1(f)X), we further define

||f||Aaq(X) :=||S0 ||X+|f|Aaq(X).(1.7)

We note that ||f||Aaq(X) is independent of the choice of S0. Indeed, if S0 and
S −0 are two different near-best approximants to f from S1 then

||S0 ||X [ C{||S0 −S −0 ||X+||S −0 ||X} [ C{s1(f)X+||S −0 ||X}.(1.8)
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Moreover, if a1 > a2 and 0 < q1, q2 [., we have the continuous embed-
ding Aa1

q1 (X) …Aa2
q2 (X).

We are going to characterize the spaces Aa
q(X) in terms of interpolation

spaces and in terms of smoothness spaces. In the literature complete
characterizations are known for the cases X=Hp=Ḟ0

p, 2, 0 < p <.,
X=Ḃ0

p, p, 0 < p <. and X=H s
2=Ḟ s

2, 2, s ¥ R. The spaces Aa/d
q (Hp), 0 < a,

p <., 0 < q [., have been investigated by DeVore, Jawerth and Popov
[DJP] where they established that if 0 < a < s and 1/y=s/d+1/p then

Aa/d
q (Hp)=(Hp, Ḃ

s
y, y)a/s, q,

where (Hp, Ḃ
s
y, y)a/s, q is the real interpolation space between Hp and Ḃ s

y, y

(see Section 2). In the special case where 1/q=a/d+1/p they identified
Aa/d

q (Hp) with the Besov space Ḃaq, q, in view of the fact that

(Hp, Ḃ
s
y, y)a/s, q=Ḃaq, q.

Approximation in Ḃap, p was considered by Cohen, DeVore and
Hochmuth, due to the simple structure of the space and the advantages
that this presents in various applications. If a > 0 and 0 < q [., they
proved in [CDH] that:

Aa/d
q (Ḃ0

p, p)=Aa/d
q (Hp).

Approximation in the Hilbertian Sobolev space H s
2(W), s ¥ R, has been

considered by Dahlke, Dahmen and DeVore [DDD] in a slightly different
setting. They actually proved that if W is a bounded, open and connected
Lipschitz domain in Rd, a > 0 and 1/q=a/d+1/2 then

Aa/d
q (H s

2(W))=B s+a
qq (W),

where H s(W) and B s+a
qq (W) are the corresponding non-homogeneous spaces

defined on W. In the case W=Rd we note that this result can be easily
modified to show that

Aa/d
q (Ḟ s

2, 2)=Ḃ s+a
q, q .

Our goal is to extend these results to the full range of Triebel–Lizorkin
and Besov spaces defined on Rd. In particular we shall prove the following
results:
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Theorem 1.9. Let 0 < p <., 0 < q, t [., a > 0 and b ¥ R. If a <
c−b and y is defined by 1/y=(c−b)/d+1/p then

Aa/dq (Ḟbp, t)=(Ḟbp, t, Ḃ
c
y, y) a

c−b
, q.(1.10)

We note that if instead of using Meyer wavelets one defines the approxi-
mation spaces by means of a more general wavelet basis Y then, the above
theorem still holds as long as Y is admissible for (b, p, t) and (c, y, y).

We shall also prove that as far as n-term wavelet approximation is
concerned the third index t, in the spaces Ḟbp, t is irrelevant.

Theorem 1.11. Let 0 < p <., 0 < q [., a > 0 and b ¥ R. Then, for
any t1, t2 > 0

Aa/dq (Ḟbp, t1 )=Aa/dq (Ḟbp, t2 ).(1.12)

Moreover, in the special case where 1/q=a/d+1/p then

Aa/d
q (Ḟbp, t)=Ḃb+aq, q .(1.13)

Also as a consequence of Theorems 1.9 and 1.11 we get the following
interpolation result:

Corollary 1.14. Let 0 < p <., 0 < t [., and b < c. If 1/y=(c−b)/d
+1/p and 0 < h < 1, then

(Ḟbp, t, Ḃ
c
y, y)h, q=Ḃb+aq, q ,(1.15)

where a=h(c−b) and 1/q=a/d+1/p.

Formula (1.15) appears to be new; in the literature (see [T], [T1]) one
usually finds interpolation results involving pairs of either Besov spaces or
Triebel–Lizorkin spaces which are more tractable.

Considering approximation within the scale of Besov spaces we shall also
establish a similar characterization for the Aa/dq (Ḃbp, t) spaces:

Theorem 1.16. Let 0 < p <., 0 < q, t [., a > 0 and b ¥ R. If a <
c−b and y, r are defined by 1/y−1/p=1/r−1/t=(c−b)/d then

Aa/dq (Ḃbp, t)=(Ḃbp, t, Ḃ
c
y, r) a

c−b
, q.

We note that contrary to the case of Theorem 1.9 the third index t in the
Besov spaces Ḃ s

p, t is not a free variable anymore and r, t are related in the
same way that y depends on p.

An outline of the paper is as follows: In Section 2 we give a short
description of the basic theory of interpolation spaces. In Sections 3 and 4

NON-LINEAR APPROXIMATION 115



we prove Jackson and Bernstein-type inequalities. In Section 5 we state the
proofs of Theorems 1.9 and 1.16 and in Section 6 we give the proofs of
Theorem 1.11 and Corollary 1.14.

2. THE K-METHOD AND INTERPOLATION SPACES

The real method of interpolation provides a means of extending the
classical theorem of Marcinkiewicz on interpolation between Lp-spaces to
more general Banach spaces. Based on the K-functional introduced by
Petree and Lions this method is intrinsically connected to approximation
theory and appears naturally in the study and characterization of approx-
imation spaces.

Let X, Y be a pair of subspaces of SŒ/P. For every f ¥ X+Y and t > 0
the K-functional is defined by

K(f, t) :=K(f, t, X, Y) := inf
f=g+h

||g||X+t ||h||Y.

For every 0 < h < 1, and 0 < q [., the interpolation space (X, Y)h, q is
defined as the set of all f ¥ X+Y such that

|f|(X, Y)h, q :=˛1 Cj ¥ Z

[2 jhK(f, 2−j)]q21/q, 0 < q <.,

sup
j \ 0

2 jhK(f, 2−j), q=.

is finite.
We will be interested in the cases where the role of X and Y will be

played by the Triebel–Lizorkin and Besov spaces. The connection between
interpolation and the approximation spaces defined in (1.6) is best illus-
trated by the following result:

Theorem 2.1. Let 0 < c < r and 0 < q [.. We also assume that for
every n ¥ Z+ and S ¥ Sn the following two fundamental inequalities hold:

Jackson: sn(f, X) [ Cn−r/d ||f||Y,(2.2)

and

Bernstein: ||S||Y [ Cn r/d ||S||X.(2.3)

Then,

(X, Y)c/r, q=Ac/dq (X).(2.4)

116 GEORGE KYRIAZIS



Proof. The proof of the theorem is well known and we refer the reader
to [DL] for details, we mention only that the proof actually shows that
there exist C1, such that for every f ¥Ac/d

q (X)

|f|(X, Y)c/r, q [ C1 ||f||Ac/dq (X),

and C2 such that for every f ¥ (X, Y)c/r, q

|f|Ac/dq (X) [ C2 |f|(X, Y)c/r, q . L

3. JACKSON-TYPE INEQUALITIES

In this section we are going to establish Jackson-type inequalities for the
various spaces we are interested in. We start with approximation in the
space Ḟbp, t, b ¥ R, p, t > 0.

Theorem 3.1. Let 0 < p <., 0 < t [. and b < c. If y is defined by
1/y=(c−b)/d+1/p. Then, for every f ¥ Ḃcy, y

sn(f)Ḟbp, t [ Cn−(c−b)/d ||f||Ḃcy, y .(3.2)

Proof. Let f ¥ Ḃcy, y from (1.4) and (1.5) we have that

f= C
I ¥D

AI(f) and (aI(f) |I|−
c

d+
1
y
− 1

2)I ¥ ay.

Let now ãI(f) :=aI(f) |I|−
c

d+
1
y
− 1

2 and M :=||ãI(f)||ay=||f||Ḃcy, y . For
every j ¥ Z we set

Lj :={I: 2−j < ãI(f) [ 2−j+1}

and we define Sj :=;I ¥ Lj AI(f). We are going to approximate f by
Tk :=;j [ k Sj. Since (ãI(f)) ¥ ay, it follows immediately that for every
e > 0

#{I: ãI(f) \ e} [ Mye−y,

and therefore for each k ¥ Z we have

C
j [ k

#Lj [ CMy2ky,

which shows that Tk ¥ SN, with N=[CMy2ky]. In order to prove (3.2) it
suffices to establish that

||f−Tk ||Ḟbp, t [ C(My2ky)−(c−b)/d ||f||Ḃcy, y .(3.3)
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For general n ¥ Z+ the result will follow from the monotonicity of
sn(f)Ḟbp, t .

For (3.3) we shall consider two separate cases:

Case I: t \ p. Taking into account that 1/y− c/d=1/p−b/d we get
that

||f−Tk ||
p
Ḟbp, t

=F 1 C
j \ k+1

C
I ¥ Lj

(aI(f) |I|−
b

d−
1
2 qI) t2

p
t

dx

[ F C
j \ k+1

C
I ¥ Lj

(aI(f) |I|−
b

d−
1
2 qI)p dx

[ C C
j \ k+1

2−jp F C
I ¥ Lj

(|I|−
1
p qI)p dx

[ C C
j \ k+1

2−jp#Lj [ C C
j \ k+1

My2−j(p−y)

[ CMy2−k(p− y).

Case II: t < p. It follows easily that

||f−Tk ||
p
Ḟbp, t

=F 1 C
j \ k+1

C
I ¥ Lj

(aI(f) |I|−
b

d−
1
2 qI) t2

p
t

dx(3.4)

[ F 1 C
j \ k+1

C
I ¥ Lj

(2−j |I|−
1
p qI) t2

p
t

dx.

Since p > y we can find d > 0 sufficiently small such that p(t−d)/t > y.
Using Minkowski’s inequality we get

1 C
j \ k+1

C
I ¥ Lj

(2−j |I|−
1
p qI) t2

p
t

(3.5)

=1 C
j \ k+1

2−jd C
I ¥ Lj

2−j(t−d) |I|−
t
p qI 2

p
t

[ 1 C
j \ k+1

2−jd( p
p−t)2

p
t ( p−t

p ) 1 C
j \ k+1

1 C
I ¥ Lj

2−j(t−d) |I|−
t
p qI 2

p
t 2

[ 2−kdp/t C
j \ k+1

1 C
I ¥ Lj

2−j(t−d) |I|−
t
p qI 2

p
t

.
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If for each finite set of dyadic cubes L we let IL(x) denote the smallest
cube in L containing x then from (3.4) and (3.5) we get

||f−Tk ||
p
Ḟbp, t

[ C2−kdp/t F C
j \ k+1

1 C
I ¥ Lj

2−j(t−d) |I|−
t
p qI 2

p
t

dx

=C2−kdp/t C
j \ k+1

2−jp(t−d)/t F 1 C
I ¥ Lj

|I|−
t
p qI 2

p
t

dx

[ C2−kdp/t C
j \ k+1

2−jp(t−d)/t F |ILj (x)|
−1 dx

[ C2−kdp/t C
j \ k+1

2−jp(t−d)/t#Lj

[ C2−kdp/tMy C
j \ k+1

2−j(p(t−d)/t−y) [ CMy2−k(dp/t+p(t−d)/t−y)

[ CMy2−k(p−y).

In either case we proved that

||f−Tk ||Ḟbp, t [ CMy/p2−k(1− yp)=C(My2ky)−(c−b)/d ||f||Ḃcy, y . L

In the next theorem we study n-term approximation when the error is
measured in the space Ḃbp, t, where b ¥ R, 0 < p <. and 0 < t [..

Theorem 3.6. Let 0 < p <., 0 < t [. and b < c. If y, r are defined by
1/y−1/p=1/r−1/t=(c−b)/d. Then, for every f ¥ Ḃcy, r

sn(f)Ḃbp, t [ Cn−(c−b)/d ||f||Ḃcy, r .

Proof. For any e > 0 and i ¥ Z, we define

Ki(e) :=3m ¥ Z : 2 ie < 1 C
I ¥Dm

ãI(f)y2
1/y

[ 2 i+1e4 ,

where as before, ãI(f) :=|I|−
c

d+
1
y
− 1

2 aI(f).
Applying the previous theorem to fm :=;I ¥Dm

AI(f), m ¥ Z, for each
n ¥ Z+ we can find a set Lm

n …Dm with cardinality #Lm
n [ n, and such that

Sm
n :=;I ¥ Lmn

AI(f) ¥ Sn satisfies

||fm −Sm
n ||Ḟbp, p [ Cn−(c−b)/d > C

I ¥Dm

AI(f)>
Ḃcy, y

,

NON-LINEAR APPROXIMATION 119



i.e.,

1 C
I ¨ Lmn

ãI(f)p2
1/p

[ Cn−(c−b)/d 1 C
I ¥Dm

ãI(f)y2
1/y

.(3.7)

For each m ¥ Ki(e) we let Sm
[2ir] be a near best approximant to fm from

S[2ir] satisfying (3.7) and we define Te :=;i \ 0 ;m ¥Ki(e) S
m
[2ir]. It is easily

seen that Te ¥ SNe with

Ne [ C
i \ 0

#Ki(e) 2 ir.

Using that

||f|| rḂcy, r=C
i ¥ Z

C
m ¥Ki(e)

1 C
I ¥Dm

ãI(f)y2
r/y

\ C C
i ¥ Z

#Ki(e)(2 ie) r,

we get an upper estimate for Ne, namely,

Ne [ Ce−r ||f|| rḂcy, r .

It follows that

sNe (f) tḂbp, t [ C 1> C
i < 0

C
m ¥Ki(e)

fm
> t
Ḃbp, t

+> C
i \ 0

C
m ¥Ki(e)

(fm −Sm
[2ir])>

t

Ḃbp, t

2

=: I t
1+I t

2.

For I1, using that p > y and t > r we get

I t
1 [ C C

i < 0
C

m ¥Ki(e)

1 C
I ¥Dm

ãI(f)y2
t/y

[ C C
i < 0

#Ki(e)(2 ie) t(3.8)

[ Ce t−r C
i < 0

#Ki(e)(2 ie) r

[ Ce t−r ||f|| rḂcy, r .

Similarly for I2 , using (3.7) and that 1/r−1/t=(c−b)/d we have

I t
2 [ C C

i \ 0
C

m ¥Ki(e)

1 C
I ¨ Lm[2ir]

ãI(f)p2
t/p

(3.9)

[ C C
i \ 0

C
m ¥Ki(e)

2−irt(c−b)/d 1 C
I ¥Dm

ãI(f)y2
t/y
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[ C C
i \ 0

C
m ¥Ki(e)

2−i(t−r)2 ite t

[ C C
i \ 0

#Ki(e) 2 ire t

[ Ce t−r ||f|| rḂcy, r .

From (3.8) and (3.9) we immediately get that for every e > 0

sNe (f)Ḃbp, t [ C(e−r ||f|| rḂcy, r )
−(c−b)/d ||f||Ḃcy, r .(3.10)

In order to extend (3.10) to general n ¥ Z+ one has to choose e :=
n−1/r ||f||Ḃcy, r and as in the previous theorem, to use the monotonicity of
sn(f)Ḃbp, t . L

4. BERNSTEIN-TYPE INEQUALITIES

In this section we are going to establish Bernstein-type inequalities
regarding the Triebel–Lizorkin and Besov spaces.

Theorem 4.1. Let 0 < p <., 0 < t [. and b < c. If y is defined by
1/y=(c−b)/d+1/p. Then, for every S ¥ Sn

||S||Ḃcy, y [ Cn (c−b)/d ||S||Ḟbp, t .

Proof. We recall that for each finite set of dyadic cubes L, IL(x) is
smallest cube in L containing x. Then, if S=;I ¥ L AI(S)

||S||yḂcy, y=C
I ¥ L

(|I|−
c

d+
1
y
− 1

2 aI(S))y

=F C
I ¥ L

|I|
y(b− c)

d (|I|−
b

d−
1
2 aI(S))y qI(x) dx

[ F (Sbt (S, x))y C
I ¥ L

|I|
y(b− c)

d qI(x) dx
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[ ||Sbt (S, · )||yLp
1F 1 C

I ¥ L
|I|

y(b− c)
d qI(x)2

p
p− y

dx2
p−y
p

[ C ||Sbt (S, · )||yLp
1F |IL(x)|

yp(b− c)
d(p− y) dx2

p−y
p

=C ||Sbt (S, · )||yLp
( F |IL(x)|−1 dx)

p− y
p

[ C(#L)
p− y
p ||S||yḞbp, t=Cny(c−b)/d ||S||yḞbp, t ,

where in the second inequality we used Hölder’s inequality. L

A similar theorem holds for Besov spaces as well:

Theorem 4.2. Let 0 < p <., 0 < t [. and b < c. If y, r are defined by
1/y−1/p=1/r−1/t=(c−b)/d. Then, for every S ¥ Sn

||S||Ḃcy, r [ Cn (c−b)/d ||S||Ḃbp, t .

Proof. Let S=;I ¥ L AI(S) ¥ Sn. For every m ¥ Z, we define Lm :=
L 5Dm, then using Hölder’s inequality we get

||S|| rḂcy, r= C
m ¥ Z

1C
Lm

(|I|−
c

d−
1
2+

1
y aI(S))y2

r
y

= C
m ¥ Z

1C
Lm

(|I|−
b

d+
1
2+

1
p aI(S))y2

r
y

[ C
m ¥ Z

(#Lm) r(
1
y
− 1

p) 1C
Lm

(|I|−
b

d−
1
2+

1
p aI(S))p2

r/p

[ 1 C
m ¥ Z

(#Lm) r(
1
y
− 1

p)(r( 1
r −

1
t))

−121−
r
t 1 C

m ¥ Z

1C
Lm

(|I|−
b

d−
1
2+

1
p aI(S))p2

t/p2 r/t

=1 C
m ¥ Z

#Lm
2 r(

1
r −

1
t)

||S|| rḂbp, t=nr(c−b)/d ||S|| rḂbp, t . L

5. PROOFS OF THEOREMS 1.9 AND 1.16

Having established the Bernstein and Jackson-type inequalities in
Sections 3 and 4 respectively the proofs of both theorems follow immedi-
ately as a direct application of Theorem 2.1.
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6. PROOFS OF THEOREM 1.11 AND COROLLARY 1.14

The proof of Theorem 1.11 will be primarily based on the following
embeddings: Let p, a > 0, b ¥ R and y be such that 1/y=1/p+a/d. If
ỹ :=min {1, y} then

Aa/dỹ (Ḟbp, t) … Ḃb+ay, y … Aa/d. (Ḟbp, t).(6.1)

To prove the right side of (6.1) we note from Jackson’s inequality
(Theorem 3.1) that |f|Aa/d. (Ḟbp, t)

[ C ||f||Ḃb+ay, y
. In addition if S0 ¥ S1, is a near

best approximant to f form S1, then

||S0 ||Ḟbp, t=||S0 ||Ḃb+ay, y
[ C ||f||Ḃb+ay, y

which implies that,

||f||Aa/d. (Ḟbp, t)
[ C ||f||Ḃb+ay, y

.

As far as the left embedding is concerned for every k ¥ Z+, we let Sk ¥ S2k

be such that

||f−Sk ||Ḟbp, t [ 2s2k(f)Ḟbp, t

and S−1 :=0, then using the Bernstein-type inequality (Theorem 4.1) we
have

||f|| ỹḂb+ay, y
[ C

.

k=0
||Sk −Sk−1 ||

ỹ
Ḃb+ay, y

[ C C
.

k=0
2kỹa/d ||Sk −Sk−1 ||

ỹ
Ḟbp, t

[ C 1 C
.

k=0
2kỹa/ds2k(f) ỹḞbp, t+||S0 ||

ỹ
Ḟbp, t
2

=C ||f|| ỹAa/dỹ (Ḟbp, t)
.

From (6.1) it follows that for every 0 < h < 1 and q > 0, if 1/y1=a1/d+
1/p and 1/y2=a2/d+1/p, then

(Aa1/d
ỹ1

(Ḟbp, t), A
a2/d
ỹ2

(Ḟbp, t))h, q … (Ḃb+a1y1, y1 , Ḃ
b+a2
y2, y2 )h, q

… (Aa1/d
. (Ḟbp, t), A

a2/d
. (Ḟbp, t))h, q.
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However, since the approximation spaces are interpolation spaces as well
(see [DP1]) we have from the reiteration theorem (see [DL]) that

(Aa1/d
ỹ1

(Ḟbp, t), A
a2/d
ỹ2

(Ḟbp, t))h, q=Aa/d
q (Ḟbp, t)=(Aa1/d

. (Ḟbp, t), A
a2/d
. (Ḟbp, t))h, q,

where a=(1−h) a1+ha2. In other words for every t > 0

Aa/d
q (Ḟbp, t)=(Ḃb+a1y1, y1 , Ḃ

b+a2
y2, y2 )h, q,

which establishes (1.12).
On the other hand in order to prove (1.13), if 1/y=c/d+1/p and

0 < a < c, from Lemma 6.2 below, we have

(Ḃbp, p, Ḃ
b+c
y, y )a

c
, m=Ḃb+am, m ,

1
m
=
a

d
+

1
p
.

From this fact and the reiteration theorem, if 1/y1=a1/d+1/p and 1/y2=
a2/d+1/p, 0 < a1, a2 < c we get that for 0 < h < 1 and a=(1−h) a1+ha2

(Ḃb+a1y1, y1 , Ḃ
b+a2
y2, y2 )h, q=Ḃb+aq, q ,

1
q
=
a

d
+

1
p
.

This concludes the proof of Theorem 1.11.
Finally, we note that Corollary 1.14 is a direct application of (1.10) and

(1.13).

Lemma 6.2. Let b ¥ R, 0 < p, c <. and 1/y=c/d+1/p. If 0 < a < c,
and 1/m=a/d+1/p then

(Ḃbp, p, Ḃ
b+c
y, y )a

c
, m=Ḃb+am, m .

Proof. Let T be the linear mapping that maps a function f to its
wavelet coefficients according to

T: f Q (|I|−b/d+1/p−1/2 (av
I(f))v ¥ V)I.

We note that for every f ¥ Ḃbp, p,
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||Tf||pap(D×V)= C
I ¥D

C
v ¥ V

(|I|−b/d+1/p−1/2 |av
I(f)|)p

% C
I ¥ D

(|I|−b/d+1/p−1/2 aI(f))p=||f||pḂbp, p

and similarly, since 1/y=c/d+1/p,

||Tf||yay(D×V)= C
I ¥D

C
v ¥ V

(|I|−b/d+1/p−1/2 |av
I(f)|)y

% C
I ¥D

(|I|−(b+c)/d+1/y−1/2 aI(f))y=||f||yḂb+cy, y
.

It follows, that f ¥ (Ḃbp, p, Ḃ
b+c
y, y )h, m if and only if Tf ¥ (ap, ay)h, m. Taking

into account that for 1/m=(1−h)/p+h/y, (ap, ay)h, m=am (see [BL,
p. 109]) we obtain that for this particular case f ¥ (Ḃbp, p, Ḃ

b+c
y, y )h, m, if and

only if Tf ¥ am. This concludes the proof of the lemma in view of the fact
that for h=a/c we have 1/m=a/d+1/p and

||Tf||am=1 C
I ¥ D

(|I|−b/d+1/p−1/2 aI(f))m2
1/m

=||f||Ḃb+am, m
. L
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